CONTINENTAL WIND PATTERNS ASSOCIATED WITH COLORADO ALPINE DUST DEPOSITION: AN APPLICATION OF THE BLM/USFS RAWS NETWORK

Authors: Morgan Phillips, Nolan Doesken
Volume: Volume 2011, No. 2, 21 Jun 2011
DOI: http://www.doi.org/10.46275/JoASC.2011.06.001
Abstract: The winter and early spring of 2008-2009 brought an unusually high number of alpine dust deposition events to the Rocky Mountains of Colorado. The greatest dust accumulations were observed in the San Juan Mountains of southwestern Colorado. Significant dust accumulation was even observed along the Continental Divide in northern Colorado. The primary source for this dust has previously been identified as the Colorado Plateau. Analysis using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) atmospheric trajectory model along with satellite imagery showed that dust from the 2009 events also originated from the Colorado Plateau, especially from areas in and around northeastern Arizona that were experiencing abnormally dry conditions that spring.

The study utilized data from the BLM/USFS Remote Automated Weather Station (RAWS) network in the southwestern U.S. to identify periods of high winds corresponding to documented Colorado dust events.The RAWS database, once considered to be brief and unsuitable as a climate resource, is quickly approaching 30 years of record and provides a valuable resource for application to various climate questions. Analysis of wind data from these RAWS sites during known dust events show that a minimum threshold wind velocity exists before dust storm generation occurs, and that this threshold velocity occurs from a southwesterly direction. Threshold velocity for the daily mean speed was found to be 15 mph and 44 mph for daily maximum gusts. Wind speeds for the study region were then evaluated for the period January through April for the past 20 years in an attempt to quantify and compare both mean daily wind speed and maximum daily wind gusts on a seasonal basis. A linear regression analysis showed correlation between the Southern Oscillation Index (SOI) and the frequency of these types of high wind periods in the RAWS database, particularly during winter months. This correlation was determined to be 0.46 for daily mean wind speeds and 0.56 for maximum daily wind gusts during the months of December through April. The correlation between periods of high winds and the SOI extends through the 20 years of wind data available for these weather stations.
Link: https://stateclimate.org/pdfs/journal-articles/2011_Phillips_2011_final_draft_mp.pdf