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1.  Introduction 

The frequency of ecological drought is anticipated to 

increase as a result of human water usage, a warming cli-

mate, and resulting shifts in oceanic and atmospheric pro-

cesses (IPCC,  2021). As these trends intensify, frequent 

ecological droughts may drive ecosystem transformations 

and cause the deterioration of vital ecosystem services 

(Crausbay et al., 2017). When various ecosystems are driv-

en beyond key thresholds, which ecosystem services may 

be impacted, and how to properly measure and predict 

these variables, are all questions whose answers vary by 

impact, ecosystem, and scale. Further complicating these 

questions is the fact that links between traditional drought 

indices and ecological drought impacts, such as declines in 

vegetation health, are not well established (Bradford et al., 

2020; Crausbay et al., 2020; Wiens & Bachelet, 2010).  

The Normalized Difference Vegetation Index (NDVI) is 

a valuable tool for monitoring drought conditions and their 

impacts on vegetation health (Anyamba & Tucker, 2012; 

Tucker et al., 1986). Studies have found that declining 

NDVI values are indicative of reduced vegetation activity 

and productivity during drought events (Park et al., 2016; 

Pettorelli et al., 2005; Phillips et al., 2008).  NDVI is there-

fore a valuable proxy for measuring the impacts of ecolog-

ical drought on vegetation and has been successfully pre-

dicted in the past using ML methods (Li et al., 2021; Roy, 

2021). However, NDVI lacks standardization based on 

historical data or baselines, making it less useful in indicat-

ing drought conditions compared to standardized drought 

indices like the Standardized Precipitation Index (SPI). 

Ecosystem-specific nuances further complicate the inter-

pretation of NDVI, necessitating an understanding of the 

relationship between drought indicators and NDVI to accu-

rately assess drought magnitude and its impact on an eco-

system. Identifying drought indices that correlate effective-

ly with NDVI enables a more consistent and reliable as-
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sessment of drought-related ecosystem stress. Additional-

ly, the widespread availability of drought indices through 

open data makes them more practical for land managers 

compared to the calculation of standardized NDVI, con-

tributing to effective and timely ecosystem monitoring. 

To better understand links between drought indices and 

ecological drought, this research employed machine learn-

ing (ML) and SHapley Additive exPlanations (SHAP) to 

determine which drought indices and environmental varia-

bles contribute most towards predicting NDVI values in 

the Cheyenne River Basin, a subbasin in the Missouri Riv-

er Basin (Lundberg & Lee, 2017). The Cheyenne River 

Basin was selected due to the presence of non-agricultural 

areas, which allows for a more consistent assessment of 

vegetation health, as measured by Terra MODIS-derived 

NDVI, and the occurrence of multiple drought events 

across the basin over the past two decades (Fig. 1). 

ML techniques have increasingly been used to success-

fully model and predict meteorological and hydrological 

drought conditions (Belayneh & Adamowski, 2013; Dik-

shit et al., 2022; Park et al., 2016; Shamshirband et al., 

2020; Sundararajan et al., 2021). However, as the number 

Figure 1: Top: The extent of the Cheyenne River Basin, including parts of Wyoming, Nebraska, and South Dakota. Bottom: 

A time series of Palmer Drought Severity Index values (-10: very dry to +10: very wet) between 2001-2021 for the basin, 

highlighting periods of light, moderate, and severe drought. 
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of published studies on ecological drought increases, there 

remains a scarcity of studies that specifically investigate 

ecological drought using ML. Consequently, there is a 

significant opportunity to leverage ML methods that have 

proven successful for other forms of drought. 

Despite the significant benefits of ML, studies have 

highlighted that ML approaches to drought monitoring 

often suffer from a lack of clarity in diagnosing the under-

lying logic of model decisions (Balti et al., 2020; Samek et 

al., 2017). To address this issue of explainability, this 

study used SHAP to interpret the relationships between 

features and results. SHAP was first introduced as an eX-

plainable AI (XAI) solution to determine the contributions 

of individual players in a cooperative game (Shapley, 

1953). SHAP was then developed into a method for inter-

preting ML models by quantifying the directional contribu-

tion of model variables, called features, to the model's out-

put (Lundberg & Lee, 2017; Shapley, 1953). SHAP 

measures how much a feature increases or decreases the 

predicted value by adding each feature individually to the 

model, assessing its directional contribution, and then av-

eraging these contributions over all possible feature order-

ings (Lundberg & Lee, 2017). This measurement allows 

for a more nuanced understanding of how a model makes 

its predictions compared to methods such as feature im-

portance scoring. As a result, previous efforts have demon-

strated that using SHAP for drought prediction can signifi-

cantly inform resulting decision-making practices (Dikshit 

& Pradhan, 2021a, 2021b). 

Therefore, this study utilized SHAP to investigate con-

nections between ecological drought impacts and drought 

indices in the Cheyenne River Basin. The study first 

sought to build a reliable ML regression model that incor-

porated both drought indices and environmental variables 

to predict vegetation health (NDVI), using R-squared to 

assess model performance. Model performance outcomes 

were solely intended to ascertain the adequacy of the mod-

el for facilitating XAI; a suboptimal model would render 

the XAI analysis ineffective. Using this model as a founda-

tion, the research then used SHAP to explore associations 

between model features and NDVI. 

 

 

2. Methods 

 

2.1 Area of Study 

The Cheyenne River Basin spans South Dakota, Wyo-

ming, and Nebraska, and was chosen for this study for its 

extensive rangeland ecosystem and history of drought (Fig. 

1). The study area is characterized by a range of geograph-

ical features, including rolling hills, plains, badlands, and 

plateaus (Culler et al., 1961; Ehlert, 2022). The Cheyenne 

River runs through the center of the region, originating in 

Wyoming and flowing eastward through South Dakota 

before eventually joining the Missouri River. The region’s 

climate is characterized by semi-arid to arid conditions, 

with limited precipitation and high variability in tempera-

ture (Ehlert, 2022). The annual precipitation in the basin 

ranges from 10 to 20 inches, with the majority falling as 

rain during the spring and summer months (Culler et al., 

1961; United States Bureau of Reclamation, 2019).  

The basin is predominantly made up of rangelands, with 

forests occurring in the north-central portion of the study 

area, and a minimal amount of developed and agricultural 

land interspersed throughout (Fig. 1). Rangelands are a key 

ecosystem in this region and consist primarily of native 

grasses, forbs, and shrubs (Boden, 2023; Ehlert, 2023; 

“Introduction to Wyoming Rangelands,” 2023). The defi-

nition of rangelands does not include a specific land use, 

underscoring that rangelands are defined by the ecosys-

tems they sustain, rather than by how they are utilized. 

Thus, rangeland management strategies must be designed 

to be implemented across private, state, and federal lands, 

and to consider the relationship between climatic, environ-

mental, and sociological factors. 

 

2.2 Data Acquisition 

The data acquisition process utilized the Google Earth 

Engine (GEE) Python API in a Jupyter Notebook hosted 

on Google Colaboratory. GEE provides open access to a 

diverse collection of satellite and remote sensing datasets, 

enabling reproducibility. This study used NDVI as a proxy 

for ecological drought and as the target data for the ma-

chine learner. NDVI is a widely used remote sensing index 

that quantifies the greenness of vegetation on the Earth's 

surface based on the reflectance of near-infrared and red 

light by plants (Pettorelli et al., 2005). The index generates 

values on a scale of -1 to +1, with negative values indica-

tive of bare soil or little vegetative cover, low positive val-

ues indicative of unhealthy vegetative cover, and high pos-

itive values indicative of healthy vegetative cover.   

Next, several drought indices and environmental varia-

bles were selected as features for the ML model to account 

for different aspects of drought dynamics. These additional 

indices and variables include short and long-term soil 

moisture status, atmospheric evaporative demand, precipi-

tation anomalies, temperature, and snow cover. The selec-

tion of data involved considering relationships between 

drought and vegetation dynamics, as well as the inclusion 

of widely used and easily reproducible drought indices. It 

is important to note that, because the primary goal of this 

model is not to optimize NDVI prediction but to identify 

commonly used indicators that closely correlate with 

changes in NDVI, the presence of correlations between 
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drought indices and environmental variables in the model 

is acceptable due to how SHAP values are calculated 

(Lundberg & Lee, 2017; Janzing et al., 2020).  

The following Earth observation data were acquired as 

image collections for the date range of February 24, 2000 

(Terra MODIS’s start date), and December 31, 2021: Terra 

Moderate Resolution Imaging Spectroradiometer (MODIS) 

surface reflectance data, Gridded Surface Meteorological 

(gridMET) Dataset, Palmer Drought Severity Index 

(PDSI), Evaporative Demand Drought Index (EDDI), 

Standardized Precipitation Index (SPI), Standardized Pre-

cipitation Evapotranspiration Index (SPEI), maximum and 

minimum temperature, precipitation data, and Daymet 

snow water equivalent (SWE) data (Table 1).  

 

2.3 Data Preprocessing 

To produce an NDVI band from the MODIS surface 

reflectance data, MODIS data were first quality controlled 

by masking cloudy and snowy pixels using bits from the 

QA band. An NDVI band was then computed by taking the 

normalized difference of the near-infrared and red bands. 

Spatially averaged values for each variable in Table 1 were 

calculated across the study area over time using the study 

area shapefile and GEE. To filter out seasonal variations, 

such as the annual spring vegetation green-up, standard-

ized anomalies were computed by grouping the data for 

each variable by day of the year, subtracting the mean for 

each day from the original value, and dividing by the 

standard deviation: 

All data were then resampled and smoothed to match the 

temporal frequency of the gridMET drought indices 

(pentads), using a 30-day rolling average for a five-day 

temporal resolution (Abatzoglou, 2013). By performing 

data standardization, emphasis was placed on identifying 

Table 1: Earth observations acquired for the ML models. 

 Data Type Data Platform Variable(s) 
Spatial & Temporal 

Resolution 
Time Period 

Drought Impact 

(Target) 

MOD09GA v006: 

MODIS/Terra Surface 

Reflectance Daily L2G 

Global 1 km SIN Grid 

Normalized Difference  

Vegetation Index (NDVI) -  

Derived 

1 km, Daily 2000 – Present 

Drought Indices 

(Features) 

Gridded Surface  

Meteorological (gridMET) 

Dataset 

Palmer Drought Severity Index 

(PDSI) 

 

  

Palmer Z Score 

 

  

Evaporative Demand Drought Index 

(EDDI) –  30, 90, 180-day 

  

 

Standardized Precipitation Index 

(SPI) –  30, 90, 180-day 

  

 

Standardized Precipitation  

Evapotranspiration Index (SPEI) –  

30, 90, 180-day 

4 km, Pentads (5-day) 1979 – Present 

Environmental 

Variables 

(Features) 

Gridded Surface  

Meteorological (gridMET) 

Dataset 

Maximum & Minimum  

Temperature 

  

 

Precipitation 

4 km, Daily 1979 – Present 

Daymet Snow Water Equivalent (SWE) 1 km, Daily 1980 – Present 
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important deviations from expected drought conditions, 

such as drought-induced unseasonably low levels of NDVI 

(Fig. 2). 

 

2.4 Model Selection 

After preprocessing, NDVI was defined as the prediction 

target (y) and the remaining variables served as features 

(X). To choose an appropriate model, the Lazy Predict 

package was utilized to identify the regression models with 

the highest predictive performance for the given data 

(Pandala, 2022). Lazy Predict automates the process of 

testing over 40 types of untuned models, including a Line-

ar Regressor, an XGBoost Regressor, and an Extra Trees 

Regressor, and provides statistics on model performance. 

Based on averaged cross-validated performance results, the 

Extra Trees Regressor and XGBoost Regressor frame-

works were selected for further use. In testing, both frame-

works had high R-squared and adjusted R-squared values, 

low Root Mean Square Error (RMSE) values, and moder-

ate runtimes. Additionally, the Extra Trees and XGBoost 

Regressors are both tree-based models, which are generally 

considered to be more interpretable than other types of 

models (Molnar, 2023). 

 

2.5 Model Tuning 

After selecting the Extra Trees and XGBoost Regressor 

frameworks, the data were split into training and test sets, 

reserving the final 20% of data chronologically for testing. 

Hyperparameter optimization, a process used to tune mod-

el parameters for optimal performance, was conducted on 

each regressor in two steps: random search and, subse-

quently, grid search. This method of model tuning is an 

essential step in machine learning model development as it 

helps improve generalization to unseen data and reduce 

overfitting (Müller & Guido, 2016). Both search methods 

utilized k-fold cross-validation to ensure the generalization 

of results. Random search was repeated six times to narrow 

down the hyperparameter ranges based on the highest 

mean cross-validated R-squared values for each search. 

Grid search exhaustively searched arrays of possible com-

binations of hyperparameter values within the narrowed 

ranges discovered through random search. After three 

Figure 2: Comparison of raw NDVI and standardized NDVI anomaly data, illustrating the distinction between unprocessed 

and preprocessed data. The dashed box highlights a decrease in the processed NDVI data (blue line), indicating how data 

preprocessing accentuated the rapid decline in vegetation health during the 2012 drought. This event may have been challeng-

ing to discern in the raw data. 

Model Hyperparameters 

Extra Trees  

Regressor 

R-Squared: 

0.48 

bootstrap = False 

max_depth = 18 

max_features = 1.0 

min_samples_leaf = 1 

min_samples_split = 2 

n_estimators = 900 

XGBoost  

Regressor 

R-Squared: 

0.54 

colsample_bytree = 0.75 

max_depth = 7 

learning_rate = 0.031 

min_child_weight = 4 

subsample = 0.62 

n_estimators = 950 

 

Table 2: Selected hyperparameters for the Extra Trees Regres-

sor and XGBoost Regressor models based on the results of 

random and grid search. These parameters, such as settings for 

bootstrap sampling, tree depth, and the number of estimators 

(trees) used, collectively shape the behavior of each model. 
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rounds of grid search, the best hyperparameters for each 

regressor were selected based on R-squared values (Table 

2). 

 

 

3. Analysis 

 

3.1 Model Performance 

Using the best hyperparameters discovered during the 

hyperparameter optimization searches, the ExtraTrees and 

XGBoost regressors were fit to the training data, producing 

two trained models. Predictions for each model were as-

sessed using the model’s predict() function on the test data. 

Mean Squared Error (MSE), RMSE, and R-squared scores 

were computed to evaluate model performance, and actual 

and predicted NDVI values were plotted.  

 

3.2 Feature Importance and SHAP Values 

Feature importance scores were calculated to provide a 

relative measure of how much each feature contributes to 

the model's predictive performance (Müller & Guido, 

2016). Additionally, the SHAP library was utilized to ex-

plain the results of each model by providing insights into 

both the magnitude and direction of feature effects on pre-

dictions (Lundberg & Lee, 2017). A SHAP Explainer ob-

ject was created to offer detailed explanations for model 

predictions. SHAP values were then computed for the test 

data in both models.  

 

 

4. Results 

 

4.1 Model Performance 

The Extra Trees Regressor model returned an MSE of 

0.54, an RMSE of 0.74, and an R-squared of 0.48 (Table 

3). These metrics suggest that the Extra Trees Regressor 

model performed moderately well in predicting NDVI val-

ues based on the input features. However, the XGBoost 

model demonstrated better performance than the Extra 

Trees Regressor model, with a lower MSE of 0.48 and 

RMSE of 0.69 (Table 3). The model’s R-squared value 

was higher at 0.54, indicating that the XGBoost model 

explained a larger proportion of the variance in the NDVI 

values, making it a more accurate predictor. 

Model performance is visually represented in Figure 3 

with plots of the true and predicted NDVI values from the 

Extra Trees and XGBoost Regressor models. Model pre-

dictions tended to be directionally correct, with much of 

the error coming from the underestimation of large NDVI 

spikes around indices 75 and 150, representing two intense 

vegetation green-ups, and the overall depression of NDVI 

values across the predicted set. 

 

4.2 Feature Importance and SHAP Values 

Based on the performance evaluation of both models, the 

XGBoost model was selected for further analysis due to 

the model’s lower MSE and RMSE. Feature importance 

scores for the XGBoost model were ranked based on their 

contribution to the model's ability to predict NDVI values 

over time in the study area (Fig. 4, left). According to the 

feature importance scores, PDSI had the highest im-

portance with a score of 0.26, followed by SPI 90-day with 

a score of 0.17, and SWE with a score of 0.11. Other im-

portant features included SPI 180-day with a score of 0.09, 

Palmer Z with a score of 0.09, and SPEI 180-day with a 

score of 0.06.  

Model MSE RMSE R-Squared 

Extra Trees 

Regressor 
0.54 0.74 0.48 

XGBoost 

Regressor 
0.48 0.69 0.54 

 

Table 3: Test set performance using the selected hyperparameters 

from Table 2. 

Figure 3: True and predicted NDVI values from the Extra 

Trees (top) and XGBoost (bottom) Regressors. 
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While feature importance scores provided a general indi-

cation of the relative importance of different features in the 

model, SHAP values offered a more detailed and direction-

al explanation of the contribution of each feature for a spe-

cific predicted NDVI value. The right plot in Figure 4 de-

picts SHAP values for each feature as individual points 

grouped by feature name. Figure 4 shows that PDSI had 

the most significant overall contribution to NDVI predic-

tion, with a direct relationship between high PDSI values 

and high SHAP values and vice versa. SHAP values for 

PDSI skewed positively, suggesting that PDSI was strong-

er at predicting high NDVI values, and weaker at predict-

ing low NDVI values. The SPI 90-day index ranked sec-

ond with a relatively balanced impact on positive and neg-

ative SHAP values compared to PDSI. SWE ranked third 

and had an inverse relationship with resulting SHAP val-

ues. Additionally, SHAP values for SWE had a wider dis-

tribution than SHAP values for SPI 90-day. Lastly, SPI 

180-day and Palmer Z index had relatively high SHAP 

scores and mirrored the direct relationships observed for 

PDSI and SPI 90-day.  

 

 

5. Discussion 

 

5.1 Model Performance 

 Model performance results show that the XGBoost 

model was more effective than the Extra Trees Regressor 

at predicting NDVI. Therefore, the XGBoost model was 

chosen for analysis with SHAP. The moderate perfor-

mance of the XGBoost model at predicting NDVI is essen-

tial as it establishes the credibility and reliability of SHAP 

results. Further, XGBoost has been the chosen method for 

several other drought and NDVI prediction studies, includ-

ing Li et al.’s 2021 paper. In this study, the authors 

achieved an R-squared of 0.83, significantly higher than 

the R-squared value achieved here, using historical NDVI 

values along with six environmental variables as model 

features (Li et al., 2021). While Li et al. developed a model 

that better explains the variance in their NDVI data, it did 

not incorporate drought indices and therefore addressed a 

different goal than this research.  

In comparison, this research aimed to assess the possibil-

ity of using a predictive model to inform the relationship of 

commonly used drought indices to vegetation health. This 

aim is an important distinction between past predictive 

Figure 4: Feature importance scores (left) and SHAP values (right) from the XGBoost Regressor.  On the right, shades of pink denote 

higher feature values while shades of blue indicate lower feature values. Negative impacts on NDVI are to the left of the vertical axis, 

while positive impacts are to the right of the vertical axis. 
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work and this study, as stakeholders throughout the wider 

Missouri River Basin have expressed the need to develop a 

more comprehensive understanding of drought indicators 

and their specific relationship to ecological drought 

(NOAA/NIDIS, 2020). 

 

5.2 Feature Importance and SHAP Values 

The feature importance scores and SHAP values from 

the XGBoost model demonstrate that drought indices (e.g., 

PDSI, SPI) were more important in predicting NDVI val-

ues than environmental variables (e.g., precipitation, tem-

perature) in the Cheyenne River Basin. This assertion sig-

nifies that changes in the values of drought indices are 

more strongly linked to changes in the predicted NDVI 

values.  

PDSI ranked highest in feature importance scores and 

had the highest absolute mean SHAP values. This result 

suggests that PDSI was the most important factor in pre-

dicting NDVI, demonstrating a direct relationship between 

PDSI values and NDVI.  However, a key takeaway from 

PDSI’s SHAP results is the importance of using SHAP to 

not only determine the strength of relationships but also 

the directionality of relationships between features and 

target variables. This takeaway is highlighted when noting 

the distribution of the SHAP values for PDSI and SPI 90-

day, which performs second in terms of absolute mean 

SHAP values, across the x-axis (Fig. 5). SPI 90-day 

showed a more even distribution than PDSI across nega-

tive and positive SHAP values, while PDSI skewed posi-

tively overall. This positive skew implies that PDSI was 

stronger at predicting high NDVI values, and weaker at 

predicting low NDVI values. While PDSI has higher abso-

lute SHAP values, the more even distribution of SPI 90-

day across positive and negative SHAP values demon-

strates that SPI 90-day may be more effective at predicting 

lower NDVI values, and, by extension, drought impacts on 

vegetation health, despite its lower absolute mean SHAP 

value.  

In this study, SWE was the one environmental variable 

to rank highly in SHAP analyses. However, in contrast to 

other model features, high SWE values were associated 

with low NDVI values, and vice versa (Fig. 6). As SWE 

was incorporated into the model without a temporal lag, 

this inverse relationship is as expected due to snow accu-

mulation in the winter months suppressing vegetation 

growth, resulting in higher SWE and lower NDVI values 

(Grippa et al., 2005; T. Wang et al., 2013; Y. Wang et al., 

2022). As temperatures increase and SWE values lessen in 

the spring, snowmelt results in increased water availability 

for vegetation, leading to higher NDVI values (Matongera 

et al., 2021; Paudel & Andersen, 2013). This inverse rela-

tionship captures key information related to seasonal vege-

tation growth suppression and green-up that is otherwise 

unaccounted for in the model. This relationship likely ex-

plains the high SHAP values of SWE, as it captures sea-

sonal vegetation dynamics that drought indices alone do 

not. However, in terms of monitoring ecological drought, 

SWE may be more useful as a lagged variable in conjunc-

tion with drought indices to provide information on water 

availability from snowmelt.  

Overall, SHAP results suggest that vegetation health 

monitoring efforts in the Cheyenne River Basin should 

focus on using PDSI and SPI 90-day. However, the direc-

tionality of SHAP values for PDSI demonstrates that it 

may be less effective at predicting lower NDVI values than 

SPI 90-day. Therefore, when considering drought impacts, 

PDSI may be an even more powerful indicator when used 

in concert with SPI 90-Day.  

Results also support the findings of the few previous 

studies that have used XAI techniques in the domain of 

drought research (Dikshit & Pradhan, 2021a). In particular, 

this study’s successful use of SHAP aligns with findings in 

Dikshit and Pradhan’s 2021 paper Explainable AI in 

Drought Forecasting, which suggested that SHAP is useful 

to understand the impact of variables within drought-

related models. The utilization of SHAP in this study not 

only reinforces the findings presented by Dikshit and Pra-

 

 

Figure 5: Distribution of SHAP values for PDSI and SPI 90-

day. SPI 90-day is more evenly distributed across negative and 

positive SHAP values than PDSI, which skews positive. 

 

 

 

         

Figure 6: Distribution of SHAP values for SWE. High SWE 

values were associated with low NDVI values, while low SWE 

values were associated with both high and low NDVI values. 



BRITTON ET AL 

Journal of Applied and Service Climatology, Volume 2024, Issue 005, DOI: 10.46275/JOASC.2024.09.001 

dhan (2021) but also emphasizes the practicality of using 

SHAP to assess the influence of various variables within 

drought-related models. These collective findings contrib-

ute to the growing consensus on the effectiveness of XAI 

methodologies in enhancing the understanding of complex 

phenomena like drought and pave the way for further ad-

vancements in the field. 

 

5.3 Limitations 

There are four main limitations to this research. First, the 

MODIS-derived NDVI data have limitations that could 

affect their accurate representation of vegetation health. 

For instance, factors such as cloud cover, atmospheric con-

ditions, and solar angle can affect the accuracy and con-

sistency of NDVI. Additionally, NDVI may not capture 

changes in vegetation density or structure, which can also 

be a resultant impact of ecological drought conditions.  

Second, the pentad drought indices are limited in their 

ability to describe daily drought conditions, as they repre-

sent only five-day intervals and may not capture spatial 

variability or lagged effects of drought on vegetation 

health. Daily data were resampled to this temporal resolu-

tion to avoid having to interpolate a significant portion of 

the data for many features used by the ML model. 

Next, XGBoost, Extra Trees, and ML regression algo-

rithms in general have limitations that can impact their 

ability to predict targets accurately. Most notably, the qual-

ity and representativeness of the training data play a criti-

cal role in the performance of a machine learner. Even with 

careful preprocessing, remotely sensed data contain some 

amount of error and uncertainty, potentially decreasing a 

model's accuracy or performance. For this research specifi-

cally, results are also limited by the moderate R-squared 

values of both models. Additionally, caution should be 

taken when interpreting and generalizing results from ML 

models, as they may not capture all complex relationships 

between features and targets and may be influenced by 

region-specific factors.  

Lastly, while SHAP values can provide valuable insight 

into the importance of different features, they can be com-

putationally expensive and may not provide accurate or 

meaningful insights if the model is poorly constructed or 

trained on biased data. SHAP values assume that input 

features are independent, which may not be true in all cas-

es and may not fully capture joint interactions between 

features (Lundberg & Lee, 2017). Therefore, SHAP values 

should be used with caution alongside other explainability 

techniques to comprehensively understand the relation-

ships between features and predictions. 

 

 

 

6. Conclusions 

This research stands apart from previous predictive 

NDVI research due to its focus on identifying the most 

influential drought indices and environmental variables for 

predicting NDVI, thereby uncovering indicators of vegeta-

tion stress in the study area. While relatively accurate 

NDVI prediction has been achieved in the past using ma-

chine learning methods (Li et al., 2021; Roy, 2021), the 

significance of this work lies in both its introduction of 

XAI methods into the ecological drought field and its iden-

tification of ecological drought indicators in the study area. 

By leveraging SHAP, this research not only provides in-

sights into the ML model's predictions but also empowers 

human users to scrutinize their intuitions and validate them 

against model results. The use of XAI to interpret ML pre-

dictions represents a novel and valuable approach in the 

domain of ecological drought. Consequently, this research 

contributes to both the application of explainable predic-

tive modeling techniques in the domain and the develop-

ment of tools for drought monitoring and management. 

Drought monitoring and management in the United 

States employ a diverse range of methods. The findings of 

this study not only inform this broader context of drought 

monitoring strategies but also offer tangible insights for 

using drought indices to guide on-the-ground actions, ben-

efiting the Cheyenne River Basin region and serving as a 

model for other rangeland areas facing ecological drought 

challenges. While acknowledging the need for further stud-

ies to assess generalizability to different regions, the meth-

ods employed in this research pave the way for a more 

effective and nuanced approach to drought monitoring for 

a variety of stakeholders, from climatologists to natural 

resource managers, ultimately fostering more adaptive 

responses to mitigate the impacts of ecological drought. 
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