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Abstract 
 

Serially complete climate datasets with no missing data are necessary for a diverse group 

of users working in many economic sectors.  In this article we describe the procedures used to 

create a Serially Complete Data set (SCD) for the U.S.  We include the selection criterion 

applied to potential SCD stations, the various procedural steps and the details applied to each 

step.  A few observations that were not previously digitized were obtained from observers 

official paper reports. The methods used to estimate missing data are the Spatial Regression Test 

and the Inverse Distance Weighting technique.  Using the criterion for selecting stations we were 

able to include 2144 stations for the SCD that had at least 1 element (maximum/minimum 

temperature and/or precipitation) for a continuous period of at least 40 years.  In addition, the 

quality control procedure assigned confidence intervals to all observations and many of the 

estimates. We continue to explore the options for estimating any missing data that remain after 

our 3 step approach and we look forward to changing the base data set form TD 3200 to GHCN. 
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Introduction 
 
 

1.1 Problem Statement.  Thousands of scientists have obtained official climate data for use in 

their analyses only to face the problem of how to address missing data.  Although missing data is 

a common problem there is no common solution.  This has led to inconsistent datasets from one 

study to another and usually no statement of the confidence or uncertainty in regard to the 

observations and estimates therein. 

 

1.2 Review of Previous Research.  In the area of information visualization, missing data can 

cause visualization failure or misleading interpretations of data (Eaton et al., 2003).The effect of 

missing data, i.e. data gaps, in the calculation of applications such as monthly mean temperatures 

can result in errors that exhibit temporal and spatial patterns (Stooksbury et al., 1999).  Areal 

average precipitation is generally derived by a weighting of available stations.  From year to year 

the available stations may increase or decrease. As stations begin or cease operations, the areal 

averages may show a step change (inhomogeneity) in the averages.  To address this problem, 

McRoberts and Nielsen-Gammon (2011) addressed monthly precipitation data and arrived at a 

homogeneous Serially Complete Dataset (SCD) for the climate divisions of the U.S. (1895-

present). Another example of an SCD was in association with the development of a National 

Drought Atlas in 1994 (Werick et al.) The National Drought Atlas was first completed in 1994 as 

an outcome of the National Study of Water Management conducted during the period November 

1989 to October 1993.  It used monthly precipitation totals from 1119 sites in the National 

Climatic Data Center's Historical Climatology Network. There have been two decades of 

additional data collected since the most recent drought atlas. 
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Demands for daily data in a serially complete dataset (SCD) are increasing in the climate 

community and among federal agencies as the result of needs in water management, 

environmental systems, and natural resource modeling (Eischeid et al., 2000; Chen et al., 2006).  

Missing data have a significant impact on agricultural decision support systems e.g. an SCD is 

required to calculate drought indices such as the Standardized Precipitation Index (McKee et al., 

1993), the Palmer Drought Severity Index (PDSI, Palmer, 1965), or the Self-Calibrating PDSI 

(Wells et al., 2004). When daily data are missing, the above indices are either not calculated or 

are calculated by excluding the data gap.  Both alternatives produce inaccurate indices and 

potentially lead to incorrect climate-related decisions. 

The type of estimation and how it is implemented does make a difference.  Chen et al. 

(2006) in the development of an SCD provided estimated daily values for maximum temperature 

(Tmax), minimum temperature (Tmin), and precipitation (PRCP).  However, the parameters used 

in the spatial regression test (SRT, Hubbard et al., 2005) were based on an annual time frame  It 

was shown byYou et al. (2006) that SRT estimates based on an annual time frame are less 

accurate than estimates derived from a shorter time period because  the regression results 

between nearby stations will change with time.  Short term weather variation owing to  weather 

events such as cold front passing or abrupt temperature changes are better reflected in shorter 

time periods but, become smoothed out over a longer time frame  In addition, the algorithm of 

Chen et al. (2006) can be improved by using more than 5 stations as demonstrated in You et al. 

(2006).    

An earlier development of an SCD was accomplished by Eischeid and his colleagues for 

the western United States (Eischeid et al., 2000). However, their dataset was limited to the 
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western U.S. and is labor intensive for applications. Eischeid et al. (2000) preselected stations 

and discarded any with a total of 48 months or more of missing data over the period 1951 to 

1991.  A month was taken as missing when more than 14 days were missing.  It was also 

necessary to classify the stations into different categories based on the time of observation 

(TOB), which can vary from year-to-year even for a single station and unfortunately supporting 

documentation for metadata regarding the TOB is often incomplete.  In addition, the partition of 

stations based on the TOB dilutes the spatial density leading to further difficulties in providing 

estimates for quasi isolated stations in a particular TOB category.   

The increasing involvement of the insurance industry in weather disasters and anomalies 

brings requests directly from the insurance providers or indirectly from the cooperating research 

agencies concerning the availability of an SCD for climate.  With the increasing availability of 

weather data (Hubbard et al., 2004) and the recent development of drought monitoring tools 

(Wilhite et al. 2005), an improved drought atlas  was proposed to the U.S. Department of 

Agriculture’s Risk Management Agency in 2005 (Wilhite, 2007) and the work presented here 

was undertaken to provide the data for this atlas. 

 

1.3 Goal.  The goal of this manuscript is to describe the procedures used to develop an SCD for 

the new drought atlas.  The drought atlas is one process by which the historical weather data are 

turned into information in order to meet the demands of a wide range of stakeholders.  The 

details of how the new SCD was created are provided in the following section.  
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Methods and Data 

  

2.1 Data. We began by retrieving the ACIS: maximum (Tmax) and minimum (Tmin) air 

temperature, and precipitation (PRCP) for the stations that met our criterion.  Fig. 1 shows the 

2144 long term stations that were selected.  This ACIS data was a copy of the official data at 

NCDC prior to their adoption of GHCN as the official daily dataset (Menne et al., 2012). Official 

data in the paper archives, were obtained through NCDC WSSRD and HPRCC paper archives, 

and digitized to fill gaps in actual observations.  The remaining missing data were filled using 

spatial estimation procedures as described below. The keyed data was ingested and combined 

with the data retrieved from ACIS to form the Base Dataset. This study provided data estimation 

of missing data for all stations from the conterminous U.S.A. during the period of record for each 

element.  Only stations with 40 or more continuous years of operation for at least one variable 

within the period 1884 to 2006 were included. The data were taken by the NOAA Cooperative 

Observer Program (COOP). Since the number of operating stations varies from year to year, 

daily data were retrieved and processed on an annual basis.  

The missing data estimations procedures were made on the basis of the official release of 

COOP data, after undergoing quality control (QC) at the National Climatic Data Center (NCDC).  

The data that would not be identical to the TD 3200 NCDC archives are the estimates made 

herein by using the spatial regression test (Hubbard et al., 2005; You and Hubbard, 2007) and the 

estimates from the inverse distance weighted methods as described in the next sections. 

Currently NCDC and the regional climate centers archive the Tmax and Tmin in degrees 

Fahrenheit and PRCP in inches.  To be consistent with the official reporting of this data in 
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English units and consistent with the official dataset, we use degrees Fahrenheit for temperature 

and inches for precipitation in this paper. 

2.2 Spatial regression test (SRT). Stations, within a circle of 250 kilometers radius, centered on 

the station of interest, are selected, for each element, and a linear regression performed, for a 

window of time (l),for each surrounding station paired with the station of interest (Hubbard and 

You, 2005).  For each surrounding station and for all daily observations in the selected window, 

regression based estimates are formed. If the missing number of days (m) represents less than 

50% if the window length, the spatial regression test (Hubbard et al., 2005) is used to estimate 

the missing value as described below 

 

xi=ai+biyi, (1) 

 

where yi is the particular measurement (e.g.  Tmax or Tmin) at the ith surrounding station, xi is 

the regressed intermediate estimate for the station of interest based on the surrounding station yi, 

and the parameters ai and bi of the linear regression function for the regression window of a 

specific length (l).  The weighted estimate (x′) is derived by utilizing the standard error of 

estimate (s) also termed the Root Mean Square Error (RMSE), in the weighting process.  The 

estimates are obtained from the following equation (You and Hubbard, 2007):   
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N is the number of stations within the circle that have R2 greater than 0.5 and N is limited to the 

15 nearest stations to limit computations.  If N < 2, no SRT estimates are calculated in this study. 
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The weighted error of estimate (s′) is calculated in accordance with You and Hubbard (2007) as 

shown in (3) below: 

 

∑
=

−−=
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i
isNs 1

21
2'

1 . (3) 

 

To account for possible systematic time shifting of observations (this occurs when an observer 

consistently records his observation on the day before or after the actual date of observation) the 

surrounding station’s data are each shifted by ± one day and the regression repeated.  The shift (-

1, 0, +1) that results in the lowest error of estimate is then used in (2) and (3).  This process 

allows for the stations with different times of observations to be intermixed in the analysis 

without causing a systematic bias.  The estimated confidence intervals are based on s′ and we test 

whether or not the station value (x), when it exists, falls within the confidence intervals at f = 4 

For normally distributed data we expect there to be no data beyond f=4 in (4) below.  Thus when 

the following test is failed we assume the datum is an outlier and we write the outcome in a set 

aside table.   

 

'''' fsxxfsx +≤≤−  . (4) 

 

Our procedure merely tests the data and writes the details in a set aside table but, does not 

replace the data in the base dataset.  Unlike distance weighting techniques, the SRT minimizes 

systematic differences between station data (the coefficients ai and bi  remove the systematic 

bias).  In our analysis we use an f value of 4.0 to limit the number of Type II flags.  This is 
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particularly important in the case of unique events such as cold fronts and hurricanes (You and 

Hubbard, 2006  

 

 

2.3 Inverse distance weighting method. The inverse distance weighting (IDW) method (You, et 

al., 2008) was employed when data were insufficient to meet the SRT requirements.  The IDW 

estimates are made based on the assumption that surrounding stations should receive more 

weight if they lie in closer proximity to the target station than other neighbors.  This estimate is 

given by (5) 
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where x̂  is the predicted variable, yi is the particular measurement (e.g. Tmax, Tmin, or PRCP) 

at the ith surrounding station and the weighting function wi is defined as the inverse of the 

distance between the target station and the ith surrounding station.  The fifteen nearest stations 

are used (n=15), a number which has proven to provide satisfactory results (Hubbard and You, 

2005).  The RMSE only reduces by 0.1 F. when 30 stations are used instead of 15 and this 

reduction is below the measurement precision.  Bias’s that exist between the target station and 

the surrounding stations are not removed when IDW is used. 

 

2.4 Step-wise Procedure Used to Develop this SCD.  The following restrictions were imposed on 

the data estimation process, 1) Any data prior to the start or falling after the end of station 

operation, were not estimated, 2) For periods when an element was not observed (e.g. some 
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times Tmax and Tmin were not measured and a station was collecting only precipitation), that 

element was not estimated, 3) Stations were not included if the length of data was less than 40 

years or there were more than two months of continuous missing data.  After the station selection 

procedure our list contained: 2144 stations with precipitation observations of which 1705 

observed temperature. 

To develop an SCD, three steps were adopted, as shown in Table 1.  The data filling 

procedures were implemented on a yearly basis using all available observations for the 

individual year even those stations not in the SCD list.  The data for the missing values were 

filled as described below.   

 

2.5 Estimation of missing data.  The estimation of missing data was accomplished in 3 steps as 

shown in Table 1. We began with Step 1 (see Table 1) and used the Base Dataset as input and 

the SRT to estimate missing data in independent windows (l=1-60, 61-120,…, 300-365).  For the 

station being examined, the other stations within 250 km were potential estimators however  if 

the R2 for the comparison between data from the station and the potential estimator was less than 

0.5 then that potential estimator station was not included in the estimation process. Additionally, 

if the days (m) with missing data represent more than ½ the window length (l), the missing data 

is not estimated in this 1st step.  The data successfully estimated were added to the Base Dataset 

to obtain an intermediary dataset that we describe as Dataset 1. 

Dataset 1 then became the input dataset for Step 2.  In this step the SRT method of 

estimation was again used, however in step 2 the window (l) was equal to 1-365 with the 

exception of leap years where l was 1-366.  The estimates from Step 2 were then added to 

Dataset 1 to create another intermediate dataset, Dataset 2. 
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In Step 3 we used IDW to estimate missing data in Dataset 2.  The IDW was performed 

on a daily basis using no more than 15 of the closet stations within a 250 km radius of the target 

station.  There is no R2 involved in IDW and if there are fewer than 2 surrounding stations the 

estimation is not performed.  When the IDW estimates were added to the Dataset 2, the result is 

the final long term Serially Complete Dataset (SCD). 

Both maximum and minimum daily temperature data were analyzed as shown in Table 1. 

When step 1 and step 2 were performed, the actual observations were subjected to the test in (4) 

and the statistical information for all values were placed in a set aside table for future reference. 

Because precipitation is not as strongly correlated from station to station, only Step 3 was used to 

estimate missing precipitation data. 

Quality control procedures were also carried out in Step 1 and Step 2.  Those values that 

failed the spatial regression test were placed in a set-aside table for optional use. 

 

2.6 Organization of the SCD.  When the data estimation processes were complete for all years 

from 1884 to 2006, the data were reorganized for the 2144 stations.  The output consisted of the 

final SCD in two formats:  the first was organized by station and the second by year.  

 

3. Results 

Table 2 shows a summary of the dataset with respect to the number of missing values and the 

roles of the different data estimation methods with respect to estimation of missing values.  For 

example, for Tmax there was a possibility of 55,913,565 values at the 1705 stations.  The 

fractions of data filled were 0.054, 0.530, 0.192, and 0.224 for key-in, Step 1, Step 2, and Step 3 

respectively.  A comparison of different window lengths for SRT on the RMSE is shown in 
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Figure 2.  Consistent with the findings for single stations in Hubbard and You (2005) the SRT 

estimation using data for shorter windows gave better overall estimates than those with longer 

windows (i.e. the performance of the estimates increases with number of windows per year, up to 

12 window.  As an example we note that the proportion of stations meeting RMSE of 2 or less is 

about 0.7 for an annual window but about 0.75 for a 6 window per year case.  About 97% of the 

estimates have an RMSE < 3 F for Step 1 while only 92% of the estimates have an RMSE < 3F 

for Step 2. 

Of the total filled data, 5.2 and 5% data were keyed in from the paper archives for Tmax 

and Tmin, respectively (See Figure 3 and Table 2).  Step 1 filled 53.0 and 51.5% of the total 

number for Tmax and Tmin, respectively. Step 2 estimated another 19.2% and 21.1% of missing 

data for Tmax and Tmin, respectively.  Step 3 estimated 22.4% and 22.1% of the total filled data 

for Tmax and Tmin, respectively.  The keyed data consists of only 2.8% of the filled 

precipitation values and the IDW estimated the other 97.2% of missing precipitation data.   

Figure 4 plots the number of valid measurements, missing data, and the number of 

estimates obtained during each step for Tmax during the period 1884-2006.  In addition to 

adding new stations, air temperature sensors were continuously added to existing stations that 

previously were PRCP only in the early 1960’s.  Although all 2144 stations were in operation 

before 1988, some were precipitation only.  In 2006 all these long-term stations were recording 

air temperature.  Most of the missing data for Tmax and Tmin can be filled by IDW estimates; 

however, for this version we chose not to fill missing data when the air temperature sensors were 

not in operation.  
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The histogram of station operation for Tmax is shown in Figure 5.  The total stations represented 

are 1705.  The histogram for Tmin is similar. 

 

4. Summary and Conclusions 

The new SCD was produced for applications in the development of a national drought 

atlas with criteria for a long-term (at least 40 years) continuous (no data gaps longer than two 

months) dataset of Tmax, Tmin, and/or PRCP for a total of 2144 stations over the period 1884-

2006.  The distribution of data length of these stations was shown in Figure 5.  The missing 

values in the original dataset retrieved from ACIS were filled with the data keyed from official 

paper records and the estimates using the SRT and IDW methods.   

After producing the suite of estimates that we describe in Table 1, we still have a few missing 

values because the conditions for calculating our estimates were not met (e.g. there were no 

stations or only one station within 250 km). We will select one of the following options for 

providing these remaining estimates: direct substitution of the value from the nearest neighbor; 

an estimate from the SRT when only one neighboring station is within 250 km, estimation with 

R extended to 300 km; etc. 

Additionally, where data can be estimated by the SRT procedure the estimates were 

assigned a confidence level.  The observations in ACIS were the TD 3200 at the time and since 

the official dataset is now the GHCN, our future work will include revising the SCD on the basis 

of GHCN data.  To our knowledge this SCD is the most extensive daily dataset available for 

users including decision makers, scientists, and insurance industries. 

This is the first serially complete dataset where a statement of confidence can be 

associated with many of the estimates, i.e. SRT estimates. The RMS for maximum and minimum 
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temperature is less than 1F in most cases and thus we are 95% confident that the value, if 

available, would lie between ±2F of the estimate. This dataset is available for interested parties 

and the directions for retrieving the dataset can be obtained by contacting Dr. Jinsheng You at 

jyou2@unl.edu   Probabilities related to extreme rainfall for flooding and erosion potential can 

be derived along with indices to reflect impact on livestock production.  The data is also of 

potential use in crop models, and in the assessment of severe heat, cold, and dryness.  The 

dataset is offered as an option to distributing the official data to the users who need this level of 

spatial and temporal coverage but are not well positioned to spend time and resources on filling 

missing data gaps with acceptable estimates. 

Analysis based on the long-term dataset will best reveal the regional and large scale 

climatic variability in the continental U.S., which affords an ideal dataset for the development of 

a new drought atlas and associated drought index calculations.  Future data observations can be 

easily appended to this SCD with the procedures described herein.  
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Figure 1. This map shows the spatial distribution of long term SCD stations (1884-2006)with 

period of record greater than 40 years.  
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Figure 2 The proportion (P) of stations  that have  RMSE less than the value shown for multiple 

windows/year in 2005. 
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Figure 3.  The fraction of filled ‘missing’ data using different sources and methods.  
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Figure 4. Numbers of valid data, missing values, and the number of estimates obtained from 

different steps through time. Step 1 involved 6 windows, Step 2 involved 1 window and IDW is 

implemented on each day independently. 
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Figure 5. The distribution of data length for stations with maximum temperature in this SCD.  

The stations shown here together with the precipitation only stations totals 2144.
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Table 1. The type of estimation and associated parameters are shown for each step of the data 

estimation.  N is the number of station within 250 km up to 15 and m is the number of missing 

data values allowed at the candidate station.  The window length is l.  

 

 

Table 2.  Statistics for the 2144 selected stations for the drought atlas project. Total Number 

(TN) is the potential number of days in the SCD or sum of all station days, TF=TN-ACIS-

Missing Table and TF=Key-in + 6win SRT +1win SRT+IDW. 

 Total Number 
(TN) Missing ACIS Total 

Filled (TF) Key-in 6win 
SRT 1win SRT IDW 

Tmax 55913565 2718144 52054393   61771 604527 218791 255939 
  Ratio to TF   1141028 0.054 0.530 0.192 0.224 
  Ratio to TN 0.049 0.930 0.020 0.001 0.010 0.004 0.005 
Tmin 55913565 2715240 52036755  61124 597725 245555 257166 
  Ratio to TF   1161570 0.053 0.515 0.211 0.221 
  Ratio to TN  0.049 0.931 0.021 0.001 0.011 0.004 0.005 
PRCP  55913565 1382 55026831  24820   860532 
  Ratio to TF   885352 0.028   0.972 
  Ratio to TN  2.47E-05 0.984 0.016 0.0004   0.015 

 

 

Step Input Dataset Estimator Window 
l( in days) 

Output 
Dataset 

Up to 15 Stations 
within 250 km 

1.  Base Dataset SRT, f=4 60 Dataset 1 Best R2 

but ≥0.5 
2≤N≤15 
m<l/2 

2.  Dataset 1 SRT, f=4 365(366 
in leap 
years) 

Dataset2 Best R2 
but ≥.5 

2≤N≤15 
m<l/2 

3.  Dataset 2 IDW 1 Final SCD No R2 
test 

N≥2 
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